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tion schemes have the potential to also simplify the grid
generation process. In 1D the amount of time spent onThis paper presents multiresolution schemes for the efficient nu-

merical solution of one-dimensional conservation laws with viscos- grid generation is negligible (even for 2D Cartesian grids
ity. The method, originally developed by A. Harten (Commun. Pure as shown by [2]); and, as is demonstrated by the short
Appl. Math., to appear) for hyperbolic conservation laws, computes algorithms of [6], the multiresolution modules too are sim-
the cell average multiresolution representation of the solution which

ple. For typical problems, the number of flux computationsprovides much information about the solution’s regularity. As a
can thus be reduced by as much as five or six times in bothconsequence, the possibly expensive ENO (essentially nonoscilla-

tory) reconstruction as well as numerous flux computations are 1D [7, 1] and 2D [2].
performed only near discontinuities, and thereby the numerical so- In this paper we modify the semi-discrete formulation
lution procedure becomes considerably more efficient. The multi- of the 1D multiresolution scheme [1] to solve the viscous
resolution scheme is also expected to ‘‘follow’’ possibly unsteady

model problem. We use the linear wave equation withirregularities from one time step to the next. When viscosity is
viscosity (sometimes called the linearized Burgers’ equa-added, predicting the location of the irregularity becomes a problem

of estimating the change in shock thickness. To this end, we derive tion) and (viscous) Burgers’ equation as our prototype
shock width estimates for our 1D prototype equations, which, when linear and nonlinear equations, respectively. Adding vis-
combined with the stability restriction of the numerical scheme, cosity, in general, ‘‘smoothes’’ the solution, and in many
provide a reliable mechanism for enlarging the original multiresolu-

cases can even stabilize an otherwise unstable numericaltion stencil. The numerical experiments for scalar conservation laws
scheme. Except for a time step limitation which can beindicate the feasibility of multiresolution schemes for the viscous

case as well. Q 1996 Academic Press, Inc. different from its inviscid counterpart, the viscous problem
does not pose any complications from the numerical point
of view. The multiresolution analysis remains the same as

1. INTRODUCTION well, since it is concerned only with the regularity of the
cell averages of the solution. In the combined scheme,

In the process of solving the equations of fluid dynamics however, the assumption about finite wave speed in the
numerically, often the grid and therefore the solution are hyperbolic case (and the use of a corresponding CFL num-
overresolved in large subsets of the computational domain. ber) must be reevaluated. Namely, the ‘‘padding’’ for
More precisely, in such regions of smoothness, the fluxes multiresolution purposes of the irregular regions by one
are evaluated too many times, and, if the high-quality but cell to the left and to the right may not be adequate for a
expensive ENO reconstruction is used, it will also be in- parabolic equation, where waves can propagte with infi-
voked unnecessarily for many grid cells. nite speed.

Adaptive grid methods can achieve an improvement in Although theoretically disturbances are felt instantly ev-
efficiency by creating grid points only where large gradients erywhere, their influence diminishes exponentially with
are found. However, the difficulty in programming them distance. By defining an appropriate cutoff point, we can
for time-dependent problems, as well as the inherent topo- approximate a shock’s effective influence to be within a
logical constraints in the structured grid case (for two or finite distance. In turn, we use this approximate wave speed
higher dimensions) are significant disadvantages of adap- as a means to enlarge the region of irregularity around the
tive grids. On the other hand, the 1D multiresolution shock so that the necessary cells will be solved for exactly.
scheme of [7] and its 2D version [2] use equally spaced We use the shock width as a measure of the region where
grids everywhere, even for unsteady problems. Typically, the shock’s influence is significant. If we estimate the
the grid is quite fine, but the method does not compute change in the width from one time step to the next, we
the fluxes in neighborhoods where the solution is smooth. can also predict the region where exact computations may
For many problems this means most of the domain. Since be needed. The change in shock width is a function of Dt,

which, in turn, must obey the stability limit of the numericalthe need for grid clustering is thus eliminated, multiresolu-
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scheme. To complete our analysis, we derive both linear u(?, t) 5 E(t) ? u0 . (2.3)
and nonlinear stability conditions for a second-order
scheme, which will then lead us to predict the number of Then the finite volume scheme can be written in the stan-
cells that the shock can span at the next time step; these dard conservation form
cells will be marked for exact flux computations. The subse-
quent modified scheme will also be tested by performing

vn11
j 5 vn

j 2 l( f j11/2 2 f j21/2) 5 (Eh(Dt) ? vn)j , (2.4)several numerical experiments, across the mesh Reynolds
number range.

The rest of this paper is organized as follows: after setting where Eh is the discrete analog of E, Dt is the time step,
up the general framework for the numerical scheme in and f j11/2 is the numerical flux, a function of 2K 1 2 vari-
Section 2, in Section 3 we use the closed form exact solution ables:
to Burgers’ equation to derive a formula for the shock
width. In Section 4 linear and nonlinear stability analyses

f j11/2 5 f j11/2(vn
j2K , ..., vn

j1K11), (2.5)are performed for schemes that are considered ‘‘close’’ to
the second-order ENO scheme. We obtain a limit for Dt
this way, which in turn will be used in Section 5, in conjunc- with 2K corresponding to the spatial accuracy. As we re-

strict ourselves to second-order spatial accuracy, K will betion with the shock width, to estimate the number of cells
to be used for enlarging the multiresolution stencil. We assumed to be unity throughout this paper. f is either an

exact or approximate representation of the flux f given byconclude with Section 6 by presenting numerical experi-
ments using second-order space and time discretizations (2.2). On the other hand, vn

j is an approximation to the
average of the exact solution u(x, t) in the cell [xj21/2 ,and various viscosity coefficients.
xj11/2], j 5 0, ..., N 2 1,

2. THE NUMERICAL SCHEME IN 1D

vn
j P

1
Dx

Exj11/2

xj21/2

u(x, tn) dx, (2.6)2.1. Finite Volume Discretization

We are solving the initial value problem for the scalar
viscous conservation law in one space dimension on with tn 5 nDt and Dx 5 2/N, N being the number of
(x, t) [ [21, 1) 3 [0, y): (uniform) cells in the interval [21, 1].

We then numerically solve the semi-discrete form of
(2.4):ut 1 f(u)x 5 0, (2.1a)

u(x, 0) 5 u0(x), (2.1b)

(vj)t 5 2
1

Dx
( f j11/2 2 f j21/2) 5 Sj (2.7)

subject to periodic boundary conditions

by using a second-order Runge–Kutta time update, yield-
u(1, t) 5 u(21, t), (2.1c) ing a uniformly second–order scheme.

ux(1, t) 5 ux(21, t), (2.1d) 2.2. Numerical Flux

The numerical flux f of (2.5) is a discrete version of
where the flux f now includes derivatives of u and we (2.2), where the convection and diffusion terms are approx-
consider its linear and nonlinear versions (n . 0, a . 0): imated separately. For the convective part, we reconstruct

u from its cell averages using an ENO interpolation, while
the ux derivative is approximated by central differencing.f(u) 5 au 2 nux , (2.2a)
We have, therefore,

or

f j11/2(vj21 , vj , vj11, vj12) 5 f R(vl , vr) 2 n
vj11 2 vj

Dx
, (2.8)

f(u) 5
1
2

u2 2 nux . (2.2b)
where f R(vl , vr) (here ‘‘R’’ stands for Riemann) is the
solution to the Riemann problem given the left and right
values of u. Since our prototype equations are scalar, forLet E(t) be the time evolution operator, so that
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f R we can, without performance penalty, use the exact 3. SHOCK WIDTH FOR THE NONLINEAR
VISCOUS PROBLEMsolution of the Riemann problem, given in [2], among other

references. In the linear case, for example, the expression
In this section we focus our attention on Burgers’for the convective part simplifies to

equation,

f R(vl , vr) 5 avl . (2.9) ut 1 uux 5 nuxx , (3.1a)

Note that the second term in (2.8) corresponds to linearly with discontinuous initial data,
reconstructing u at the cell interface (using only vj and
vj11) and then taking its derivative, which, only for the
second-order case, coincides with using the cell averages u(x, 0) 5Hu0 , if x , 0,

2u0 , if x $ 0,
(3.1b)

vj and vj11 to approximate ux .

where u0 . 0. We first review the exact solution for this
2.3. Time Integration problem, from which we derive the value of ux at x 5 0.

The shock width d, which is inversely proportional toFor the time update of (2.7) we use the following second-
max2y,x,y uuxu , is then derived as a function of time. It willorder Runge–Kutta (RK2) method,
also be shown, that the change in d is largest between t 5
0 and t 5 Dt.

vn11/2
j 5 vn

j 1 DtSj(vn),
(2.10) 3.1. Maximum ux from the Exact Solution

vn11
j 5 As (vn

j 1 vn11/2
j 1 DtSj(vn11/2)).

Via the Cole–Hopf transformation

In the above, the symbolic n 1 As index is used to denote
u(x, t) 5 22n

fx

f
, (3.2)an intermediate value of the cell average vj , computed for

the first stage of the RK2 method. The right-hand side Sj

is a function of the entire v array, or at least some nontrivial
we can derive an exact solution for the general problemsubset thereof (in our notation, dropping the subscripts j
(3.1a) (see [3, 11]). In the particular case of initial conditionfrom v, means the entire array v). Note that (2.10) is also
(3.1b), we obtain (from [3])known as the Heun method.

u(x, t)

2.4. Second-Order ENO Reconstruction

To obtain the value of the function u at the cell boundary, 5 2u0

2 sinh
u0x
2n

1 eu0x/2n ESx 1 u0t

2Ïnt
D1 e2u0x/2n ESx 2 u0t

2Ïnt
D

2 cosh
u0x
2n

1 eu0x/2n ESx 1 u0t

2Ïnt
D2 e2u0x/2n ESx 2 u0t

2Ïnt
D ,

we use a piecewise linear reconstruction of u from its cell
averages. For the reconstruction an adaptive stencil is used,
resulting in a second-order ENO interpolation, (3.3)

where E(x) denotes the error functionv2
j11/2 5 vj 1 As M(vj11 2 vj , vj 2 vj21), (2.11a)

v1
j11/2 5 vj11 2 As M(vj12 2 vj11 , vj11 2 vj), (2.11b)

E(x) 5 erf(x) 5
2

Ïf
Ex

0
e2t2 dt. (3.4)

with
We can obtain ux directly from (3.3) by differentiation,

or we can simply use (3.2) to get

M(a, b) 5Ha, if uau # ubu,

b, if uau . ubu.
(2.11c)

ux(x, t) 5 22n
fxxf 2 f2

x

f2 , (3.5)

The quantities given by (2.11a) and (2.11b) correspond,
therefore, to the vl and vr used in (2.8), the point values where f is the denominator in (3.3). fx , which can be

extracted from the numerator of (3.3), needs to be differen-of u to the left and to the right of the cell interface at j 1
1/2, respectively. tiated once (we omit the details), and subsequent substitu-



210 BARNA L. BIHARI

With respect to (3.7), we would like to point out the fol-
lowing.

Remark 3.1. When t R 0 it follows that d R 0, which
confirms that initially we have jump discontinuity of
width 0.

Remark 3.2. As t R y, it implies d R 4n/u0 , a result
that can also be derived from the steady state solution

lim
tRy

u(x, t) 5 2u0 tanh
u0x
2n

(3.8)

by differentiating and setting x 5 0. Moreover, if h denotes
FIG. 1. Geometrical definition of shock width d. the vertical distance between points A1 and A2 , then we

can write using (3.8):

tion of f, fx , and fxx into (3.5), along with setting x 5 0,
h 5 2u0 tanh 1 P 0.761 3 2u0 . (3.9)finally yields

In other words, at steady state, the shock width yields the
ux(0, t) 5 2u0 Fu0

2n
1 1/Ïfnt eu2

0t/4n F1 1 E S u0t

2Ïnt
DGG . length over which about 76% of the change from left to

right occurs.
(3.6)

Note that from Fig. 1 it is clear that x 5 0 is the global 3.3. The Travelling Wave Solution
maximum point for uuxu; this can be also derived by lengthy

To get a qualitative picture of the shock structure, it isbut straightforward differentiation of (3.5). We now pro-
sometimes useful to consider the travelling wave solutionceed to give a more precise definition of the shock width.
(e.g., [15]) u(x, t) 5 u(j), j 5 (x 2 st)/n of the more general
version of (3.1),

3.2. The Shock Width

ut 1 f(u)x 5 nuxx , (3.10a)Although there are several definitions of shock width,
in all of them the width is proportional to the ratio of the
coefficient of viscosity (n) and the shock strength (2u0) u(x, 0) 5 Hul , if x , 0,

ur , ul , if x $ 0.
(3.10b)

[17]. For our purposes we define the shock as follows: draw
the line going through the origin and having slope ux(0,
t), and denote by B1 and B2 (Fig. 1) its intersection points The resulting ordinary differential equation in j can now
with the asymptotes u 5 u0 and u 5 2u0 , respectively. be intergrated once to arrive at
The sum of distances of points B1 and B2 to the x 5 0 axis
is then d. The vertical lines x 5 2Asd and x 5 Asd will intersect

2su 1 f(u) 1 c 5 u9, (3.11)the curve of u(x, t) at points A1 and A2 , which will be the
previously mentioned ‘‘cutoff’’ points. So we are ultimately
interested in how far points Ai , i 5 1, 2, will move between where s and c can be determined from ‘‘boundary condi-
two time steps. tions’’ limjR2y u(j) 5 ul and limjRy u(j) 5 ur:

Given the fact that most of the change in u due to the
shock takes place within points A1 and A2 , this definition

c 5 sul 2 f(ul), (3.12a)certainly seems reasonable. Once ux(0, t) is known from
(3.6), d is also readily given (as a function of time) by

s 5
f(ur) 2 f(ul)

ur 2 ul
, (3.12b)

d(t) 5
2u0

uux(0, t)u
5 2@Su0

2n
1 1/Ïfnt eu2

0t/4nF1 1 ES u0t

2Ïnt
DGD .

where the wave speed s is now identified as the shock
speed, having the same expression as in the purely hyper-(3.7)
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bolic case. One more integration of (3.11) gives an implicit shall study in this subsection. Our aim is to derive some
formula for u, sufficient conditions for linear stability using periodic

boundary conditions. In the case of a second-order ENO
scheme, we altogether have four possibilities for the right-E du

f(u) 2 su 1 c
5 j 1 c1 , (3.13) hand side of (2.7) for each j. If we consider only one of

these cases and assume that it holds for all j simultaneously,
we get stability conditions for this fixed stencil scheme. Inc1 being a constant of integration. In the particular case
other words, it is possible that the ENO scheme will chooseof f(u) 5 As u2 we obtain
the same orientation of stencil for each cell, and we argue
that for the ENO scheme (2.11) to be stable, in the strictu(j) 5 ur tanh

ul 2 ur

4
j . (3.14)

sense, the chosen special case must be stable as well.

When ul 5 2ur 5 u0 as in (3.1b), (3.14) will also lead
Method for Stability Analysis

to (3.8).
If the function M in (2.11c) always chooses the right-The shock will therefore move with speed s and will

hand stencil for reconstruction, we can write using (2.11a):tend to the quasi-steady profile of (3.14). Thus, the exact
solution (3.3) can be modified to fit the more general initial
data (3.10b) by simply substituting x 2 ((ul 1 ur)/2) for
each x and (ul 2 ur)/2 for each u0 in (3.3). The interpreta- v2

j11/2 5
vj11 1 vj

2
(4.1)

tion of 2u0 in identities (3.6) and (3.7) is that of the shock
strength; hence both formulae remain unchanged.

The shock width gives us an idea of how large the region and if this value is used as ul in (2.9) and (2.8), the scheme
of irregularity is at any given time. The change in shock (2.7) becomes
width, Dd, on the other hand, indicates how far the irregu-
larity would move during one time step, which is the infor-
mation we need for the multiresolution analysis. Again, (vj)t 5 2

1
Dx Fa

2
(vj11 2 vj21)

(4.2)
intuitively, it seems clear—and it is shown in Appendix
A—that d will change the most during the first time step,
i.e., between t 5 0 and t 5 Dt. The critical time step there- 2

n
Dx

(vj11 2 2vj 1 vj 2 1)G.
fore is the first one, which will give us an upper bound on
the possible change in d:

Equation (4.2), however, is nothing but the well-knownD 5 sup
t. 0

Dd(t) 5 sup
t.0

[d(t 1 Dt) 2 d(t)] 5 d(Dt). (3.15)
finite difference scheme with central spatial discretization
in a semi-discrete form.

4. TIME STEP RESTRICTION There already exist stability results using first-order (Eu-
ler) time update for (4.2) (see [10, 12, 14]); but to getIn order to determine how many cells the shock will cut
second-order accuracy in time also, we used the RK2across during one time step, we now have (3.15) and (3.7),
method (2.10). To analyze the stability of this combinedbut to be useful, (3.7) needs to be further simplified. As
scheme, we proceed as in the matrix method. (The matrixin the purely hyperbolic case where the assumption of a
method’s main advantage lies in its ability to handle arbi-CFL number less than unity was used (see [7, 2]), here too
trary boundary conditions; although it has been pointedwe can use the stability limitation on Dt. To derive a time
out in [10, 12] that in some cases it gives stability regionsstep limitation, we may want to approach the problem from
larger than the correct one. Because of the periodic bound-the linear point of view, where a classical von Neumann
ary conditions, in our case, this method is equivalent tostability analysis can be applied to the sufficiently simplified
using von Neumann stability analysis.)scheme, or, on the nonlinear level, try to find conditions

First, note that (4.2) can be writtenfor total variation stability, a concept introduced by Harten
[8]. In this section we shall use both of these stability
methods and come up with reasonable linear and nonlinear v9 5 Av, (4.3a)
stability estimates.

where4.1. Linear Stability Analysis

Rigorous stability analysis, in the classical sense, can be
done only for the linear flux (2.2a), which is the case we v 5 (v0 , v1 , ..., vN21)T (4.3b)
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and

(4.3c)A 5 2
1

Dx 1
2n
Dx

a
2

2
n

Dx
0 ? ? ? 0 2

a
2

2
n

Dx

2
a
2

2
n

Dx
2n
Dx

a
2

2
n

Dx
? ? ? 0 0

0 2
a
2

2
n

Dx
2n
Dx

? ? ? 0 0

_ _ _ _ _

0 0 0 ? ? ?
2n
Dx

0

a
2

2
n

Dx
0 0 ? ? ? 2

a
2

2
n

Dx
2n
Dx

2 .

Matrix A is a circulant matrix, and, as such, its eigenvalues and set
are given by [16]

w 5 Tv.

lj 5 2
2n

(Dx)2 1
2n

(Dx)2 cos
2fj
N

2 i
a

Dx
sin

2fj
N

, (4.4) Then (4.3a) is equivalent to

w9 5 Lw. (4.7)
where j 5 0, ..., N 2 1. To simplify the algebra and clarify
the meaning of the variables, we introduce When integrating each (now uncoupled) equation of (4.7)

by a numerical method

s 5
aDt
Dx

, (4.5a)
wn11

j 5 k(ljDt)wn
j ,

R 5
aDx

n
. (4.5b) we say that the method is stable if the amplification factor

k satisfies

Here s corresponds to the usual CFL number, and R is uk(ljDt)u # 1 (4.8)
the mesh Reynolds number. Also, for brevity, we let

for each j 5 0, ..., N 2 1. Matrix A is circulant, hence
normal; thus T is orthonormal, so stability for w is equiva-

c 5 cos
2fj
N

, (4.5c) lent to stability for v (their L2-norms are equal). This rea-
soning is general enough that it holds for all ODE time-
integration methods; we shall use it for RK2.

so that (4.4) becomes

Approximate Region of Stability

The amplification factor k for the RK2 method is givenlj 5
1
Dt F2 2

s

R
(1 2 c) 2 is Ï1 2 c2G. (4.6)

by (e.g., [4])

k(lDt) 5 1 1 lDt 1 As (lDt)2. (4.9)Returning to Eq. (4.3a), we diagonalize its coefficient
matrix A,

When lj (4.6) is used in (4.9), we get a quite complicated
expression for uku and inequality (4.8) will not have a closed

A 5 T21LT,
form solution. Although numerical stability regions are
always available, for the purposes of this paper we seek aL 5 diag(lj)
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and

s #
6
R

. (4.12b)

By (4.5a)–(4.5b), conditions (4.12) translate into the condi-
tion on the time step:

Dt # min S6n
a2 ,

(Dx)2

2n D . (4.13)

Figure 3 shows this region in the s 2 R plane.

Remark 4.1. For the RK1 method (forward Euler) we
have a similar but more restrictive result (see [10]),

Dt # min S2n
a2 ,

(Dx)2

2n D . (4.14)

FIG. 2. Exact and approximate stability regions in the complex lDt
plane. (See Fig. 3 for a comparison with (4.13).)

Remark 4.2. Note that R R y represents the inviscid
case (n R 0) for which both the RK1 and RK2 methods
are unconditionally unstable when used with central differ-bound on Dt to be used in (3.7). We have experimented
encing in space.with algebraic ways to obtain solutions of (4.8), but the

calculations were lengthy and cumbersome, and finally
4.2. Stability Analysis on the Nonlinear Levelthey gave only sufficient conditions. We then came up with

the following geometric (and more intuitive) argument. We now turn to analyze the total variation stability of
Knowing that the stability region of the RK2 method, when the numerical scheme. The following analysis will apply
plotted in the complex z 5 a 1 ib plane, is close to an to linear or nonlinear fluxes, and the second order in space,
ellipse, we propose to approximate this exact stability re- first order in time, nonlinear total variation diminishing
gion by an ellipse, which, as it turns out (and is proved in (TVD) scheme; the only difference between this and the
Appendix B) is enclosed in the actual region of stability (first-order in time) ENO scheme is the definition of the
(see Fig. 2) and touches it at four points. Thus the ellipse’s function M (2.11c). For the TVD scheme the minmod
major and minor axes are 2Ï3 and 2 long, respectively,
and its center is located at (21, 0). Instead of (4.8), we
now require

[Re(lDt) 1 1]2 1 Ad [Im(lDt)]2 # 1. (4.10)

Upon substitution of (4.6) into (4.10), we arrive at

F2
2s

R
(1 2 c) 1 1G2

1
1
3

s2(1 2 c2) # 1 (4.11)

which must hold for all 21 # c # 1. After simplification
(details omitted), we are left with two conditions that s 5
s(R) has to obey:

s #
R
2

(4.12a)
FIG. 3. Linear and nonlinear stability boundaries in the s-R plane.
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function is used instead, which simplifies to (2.11c) if the uzju # r(gj) (4.20a)
signs of a and b are the same. In most of the domain
(except for local extrema) the two schemes will, in fact, with
be identical. The stability bound will then be extended,
using the Shu–Osher result [21], to the TVD scheme which
is of second-order temporal accuracy. Using the previous r(a) 5H0 for first order in space

As (uau 2 a2) for second order in space.
(4.20b)

reasoning, this CFL condition will be used for the ENO
scheme also.

A scheme (2.4) is said to be total variation stable if the In the above and throughout this section we omit the super-
total variation (TV) scripts n wherever its meaning is obvious. With these defi-

nitions, Harten shows that for both the first- and second-
order schemes (4.19)–(4.20), a sufficient condition for the

TV(vh(x, t)) 5 TV(vn) 5 ON21

j50
uvn

j11 2 vn
j u (4.15) scheme to be TVD is a CFL-like condition

max
j

ugju # 1, (4.21)
of a sequence of numerical approximations vh(x, t) is uni-
formly bounded in h 5 Dx and t 5 nDt, with h R 0 and
0 # t # T (see [8]). Moreover, the scheme is total variation since gj , as defined by (4.19c), is the mean-value local
diminishing (TVD) if CFL number. We shall now revisit the proof given for the

second-order case and modify it to account for the added
viscosity. First, we state the result.TV(vn11) # TV(vn). (4.16)

THEOREM 4.2. A scheme of the form (4.17), with C6
j

Clearly, a TVD scheme is total variation stable. defined by
Using these definitions, Harten shows the following in

[8].
C6

j 5 Ĉ6
j 1 l

n
Dx

, (4.22)
LEMMA 4.1. If a scheme written in the form

where Ĉ6
j comes from definition (4.19b), is TVD ifvn11

j 5 vn
j 1 C1

j D1vn
j 2 C2

j21D2vn
j , (4.17)

s #
R

R 1 4
(4.23)where D1zj 5 zj11 2 zj , D2zj 5 zj 2 zj21 , satisfies, for all j,

C1
j $ 0, (4.18a) with s and R given by

C2
j $ 0, (4.18b)

s 5 max
j

ugju, (4.24a)
C1

j 1 C2
j # 1, (4.18c)

R 5 max
j

ugju
Dx
ln

. (4.24b)
then the scheme is TVD.

He then introduces the following explicit scheme, with
Remark 4.3. We observe that the scheme (4.17), (4.22)first- and second-order spatial and first-order temporal ac-

approximates (2.1a) to second order in space, since wecuracy,
added a second order, centrally discretized viscous term
to Harten’s original second-order TVD scheme.

vn11
j 5 vn

j 1 Ĉ1
j D1vn

j 2 Ĉ2
j D2vn

j , (4.19a)
Remark 4.4. The definition of s and R is somewhat

Ĉ6
j 5 As [ug 1 zu 7 (g 1 z)]j , (4.19b) different from that of the linear stability analysis, but their

qualitative meaning is the same; (4.24a)–(4.24b) are the
gj 5 l

D1 fj

D1vj
(4.19c) nonlinear equivalents of (4.5a)–(4.5b).

Proof of Theorem 4.2. We shall prove this theorem by
showing that the conditions of Lemma 4.1 are satisfied.z j 5

D1gj

D1vj
, (4.19d)

With the definitions of Ĉ6
j given in [8], conditions (4.18a)–

(4.18b) are immediately satisfied. Once (4.18c) is shown,
the theorem itself is proven. We need to show therefore:where f j 5 f(uj); moreover, gj 5 g(vj) is chosen so that
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nally, we note that the original ENO scheme is expected
Ĉ1

j 1 Ĉ2
j 1 2l

n
Dx

# 1. (4.25) to be stable as well, under the same CFL-like restrictions.
In the absence of rigorous theory for the ENO scheme,
for the second-order case we use its similarity to the TVDWith definitions (4.19b)–(4.19d), (4.20b), and (4.24a)–
scheme to support the above conjecture; all of our numeri-(4.24b), and property (4.20a), it follows that (4.25) will be
cal experiments also support this claim.satisfied if

5. THE MULTIRESOLUTION SCHEME3
2

s 2
1
2

s2 1 2s
1
R

# 1. (4.26)

In this section we combine the numerical scheme pre-
sented in Section 2 with the multiresolution algorithm usedSince
for regularity analysis, introduced in [7]. After briefly re-
viewing the original algorithm, we present the modification

s
4
R

(s 2 1) # 0 (4.27) necessary for it to work in the viscous case.

5.1. A Review of Harten’s 1D Multiresolution Analysis(s # 1 is required by (4.20a)), a slightly more restrictive
version of (4.26) would be obtained by adding (4.26) and We first briefly review Harten’s 1D multiresolution
(4.27) to get scheme [7] and its semi-discrete implementation, first pre-

sented in [1] (in this work we use the version that is referred
to in [1] as ‘‘full multiresolution scheme’’). These refer-

(s 2 2) Fs S1 1
4
RD2 1G$ 0. (4.28) ences contain ample detail with regard to both analysis

and actual algorithm in a form of pseudo-code; we refer
the reader to these sources. The 1D multiresolution mod-It is now evident that (4.28) is satisfied if
ules can also be considered special cases of the 2D algo-
rithms presented in [2]. The main steps of the algorithm

s #
R

R 1 4
, now follow.

We compute the multiresolution representation vn
M of

the cell averages vn
j of the solution at time step n,which completes the proof.

Remark 4.5. The slight strengthening of the stability vn
M 5 (d1, d2, ..., dL, vL)T, (5.1)

bound (4.26) by (4.27) is very small. By solving the qua-
vn

M 5 Mvn, (5.2)dratic inequality (4.26) directly, it is possible to get a bound
for (4.26) which is quite complicated, and it deviates from
the approximate one by a negligible amount; both ap- where the dk are the scale or multiresolution coefficients
proach 1 and R R y. Strictly speaking, therefore, the and vL is the cell average array on the coarsest grid corre-
theorem gives sufficient conditions for TV-stability. How- sponding to level L. This procedure, the ‘‘encoding’’ M,
ever, our numerical experiments indicate that, for all prac- gives much information about the regularity of the function
tical purposes, (4.23) is also a necessary condition. v. The size of the coefficients dk, among other things, can

be used to predict our success in obtaining the fluxesSince Theorem 4.2 holds for first-order time update only,
f j11/2 from coarser levels by central interpolation, insteadwe invoke a result by Shu and Osher [13] that relates first
of the direct flux computation of (2.8). The d’s that fallorder in time TVD schemes to TVD schemes with higher
below a certain prescribed tolerance are truncated to zero;order time updates. In particular, it is shown in [13], that
these are the localities where interpolation from the nextif the Heun method (2.10) (one form of RK2) is used to
coarser level is accurate enough. Everywhere else theadvance the solution in time, the resulting method will be
fluxes must actually be evaluated.TVD if the corresponding first-order (in time) method is

For the direct flux computations, we also need the ap-TVD (i.e., both subject to the same CFL-like restriction).
proximate values of the cell averages v, obtained by theAs it applies to our case, we conclude that the scheme
‘‘decoding’’ using the truncated values of the d’s. Symboli-(2.10), with Sj given by
cally, this corresponds to an operation M21 (since our multi-
resolution interpolation uses a fixed stencil, M and M21

Sj 5
1

Dx
(C1

j D1vn
j 2 C2

j D2vn
j ), (4.29) are constant matrices);

ṽn 5 M21v̂n, (5.3)is TVD and, therefore, TV-stable if (4.23) is satisfied. Fi-
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with shall concentrate on the nonlinear case, so we shall use
the shock width results from Section 3; but in the absence
of theory on stability (or convergence) for ENO schemes,v̂n 5 tr(vn

M), (5.4)
we shall make the usual leap, from proving linear or nonlin-
ear stability for a slightly simplified scheme, to conjecturingwhere tr is the aforementioned truncation operation.
stability for our scheme.The numerical flux computations start on the coarsest

We start by defining the nonlinear versions of s and R:level L, where the fluxes are evaluated directly using (2.8).
On each level thereafter a decision is made at each cell
face whether to compute the flux directly or to interpolate. su 5

uDt
Dx

, (5.6a)
Once the fluxes on the finest level are all computed, we
are ready to perform the first stage of a second-order

Ru 5
uDx

n
. (5.6b)Runge–Kutta (RK2) time stepping on the finest grid. The

entire procedure then repeats for the second stage of the
RK2 method. From (5.6a) we get

The algorithm can be summarized in operator form as
(to be carried out in a right-to-left order)

Dt 5
suDx

u
, (5.7)

vn11
j 5 E(1)

M M21trM E(0)
M M21trMvn, (5.5)

which, when evaluated at u0 and substituted into (3.7) gives
where E(0)

M and E(1)
M are the two-stage equivalents of the (after simplification and omission of the u0 subscript from

evolution operator Eh in (2.4). s and R):
The truncation operation above actually includes the

regularity analysis, the heart of a multiresolution scheme.
d(Dt) 5 2Dx@HR

2
1! R

fs
1/esR/4F1 1 ESÏsR

2 DGJ.The regularity analysis is the systematic comparison of the
size of the multiresolution coefficients to the allowable

(5.8)tolerance «k , performed at each level 0 , k # L. It is at
this step where the decision, whether to compute directly

We shall now derive upper limits for the shock wideningor to interpolate from coarser levels, is made. Wherever
in the linear and nonlinear cases, using stability conditionsthe coefficients dk fall below the tolerance, interpolation
(4.12) and (4.23), respectively. Our goal is estimate theis sufficient; otherwise we need to compute as usual. The
extent of shock widening in terms of R.more we can truncate, the more exact flux evaluations and

ENO reconstructions we save.
Estimate Using the Linear Stability BoundIn the above algorithm it was also important to account

for the possible movement of an irregularity, since from If we use the definitions (4.5a) and (4.5b) for s and R
the current location of a shock we will not get the correct in (5.8), respectively, then application of (4.12b) in the
future shock unless the cell that would contain it at the second term of the denominator of (5.8) gives
next time step is solved for exactly also. For hyperbolic
problems we assumed finite speed of wave propagation,
along with a CFL number less than one, resulting in a d(Dt) # 2Dx@HR

2
1 ! R

fs
1/e3/2 F1 1 E S!3

2DGJ . (5.9)
‘‘padding’’ of one cell to the left and one cell to the right
of the current shock location.

For simplicity, introduce the constantThe algorithm can be used, with a relatively minor modi-
fication, for the numercial solution of conservation laws
with viscosity. The only assumption not valid here is that a 5 Ïf e3/2 F1 1 E S!3

2DGP 15.216 (5.10)
of the finite wave speed. However, once we can reliably
predict the shock movement, the rest of the multiresolution
scheme can be used unchanged. so that (5.9) becomes

5.2. The Multiresolution Stencil
d(Dt) # 2Dx@SR

2
1 !R

s

1
aD . (5.11)

We now turn to combine results from Sections 3 and 4
in order to estimate the amount by which the region of
irregularity must be enlarged to account for the movement To find out how many cells P the shock will span at time

Dt, we must equate the left-hand side of (5.11) to PDxof the shock from the current time step to the next. We
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and express P, an integer, from it. We now use stability Estimate Using the Nonlinear Stability Bound
condition (4.12a) to get the following general form for P:

If the total variation stability bound (4.23) is used in
conjunction with identity (5.8), we argue as follows. First,
we can simplify (5.8) by noting that E(x) , 1 ;x $ 0; then

P # 2@FR
2

1 ! R
min(R/2 , 6/R)

1
aG. (5.12)

we apply (4.23) to arrive at an expression for the number
of cells P that the shock may occupy,

We have now arrived at an expression for the measure
of stencil size which is useful; R is the only variable here

P # 4/FR 1 !R 1 4
f

e2R2/[4(R14)]G. (5.16)and (5.12) needs to be evaluated only in the regions of the
finest grid where exact computations are needed. P being
an integer, we must decide exactly how we interpret the

As in the linear stability case, it is useful to find condi-right-hand side of (5.12). One approach is to take its integer
tions on R for which P # As, so that the multiresolutionpart and add one, to ensure we ‘‘are on the safe side.’’ Our
stencil does not need to be extended due to the viscositynumerical experiments show that rounding is sufficient; i.e.,
term. In this case, this special condition amounts to re-if the right-hand side expression is below I 1 As, then P 5
quiringI; otherwise P 5 I 1 1, I being an integer.

A closer look at (5.12) can reveal its other favorable
properties. In particular, we may be interested to find out

R 1 !R 1 4
f

e2R2/[4(R14)] $ 8, (5.17)for what values of R is P # As (assuming rounding is used)
so that we need no stencil enlargement beyond the one
required by the shock convection. (The travelling wave

which, using a numerical root finder, is satisfied wheneversolution of Section 3.3 shows that the shock speed is the
same as in the inviscid case.) In order to do this, we explic-

R . 7.4297. (5.18)itly discuss the two cases implied by the minimum opera-
tion in (5.12):

Remark 5.1. A comparison of (5.15) to (5.18) reveals(i) If R/2 # 6/R, then R # 2 Ï3, and we require
that both the linear and nonlinear stability bounds give
similar regions where a ‘‘hyperbolic’’ multiresolution sten-
cil is adequate. This stems from the two stability curves4SR 1

2Ï2
a D#

1
2

. (5.13)
being close to each other in the neighborhood of R 5 8,
as seen from Fig. 3 also.

(5.13) holds for all R satisfying Remark 5.2. Even when R R 0 and we expect a very
wide (and weak) shock, (5.8) implies, in both the linear
and nonlinear cases, that P is finite,2S4 2

Ï2
a D# R # 2Ï3

P # 2Ïf P 3.545, (5.19)
which, considering the value of a from (5.10), is impossible.

which is, in fact, its supremum over all R . 0.(ii) On the other hand, if R/2 . 6/R, then R . 2Ï3,
and the condition of R is

As it is known from the theory, two competing forces
are present in Burgers’ equation: nonlinearity which tries
to keep the shock sharp, and viscosity which attempts to2/FRS1

2
1

1

aÏ6
DG#

1
2

, (5.14)
smooth it. When the shock is wide, we may be forced to
overresolve it by enlarging the multiresolution stencil by
possibly several points; but at the next time step the solu-or
tion may become so smooth that there is no need for any
exact computations in the neighborhood of what used to
be a sharp shock. This special treatment due to viscosityR $ 4@S1

2
1

1

aÏ6
DP 7.593. (5.15)

is used only near cells where the multiresolution analysis
finds some irregularity. If the irregularity is smoothed out,
no multiresolution stencil extension is needed, since thereThat is, as long as R obeys (5.15), there is no additional

stencil enlargement needed due to the viscous term. is no stencil.
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TABLE I6. NUMERICAL RESULTS IN THE 1D VISCOUS CASE

Numerical Solution of 1D Convection-Diffusion
We now present several sets of numerical results for Equation, I.C. (6.3)

both the linear and nonlinear cases, for various values of
R n e e1 e2 eyR and different initial conditions, but for the same grid

of 256 points on the finest level and periodic boundary
0.001 10 2.91 9.28 3 1026 3.57 3 1025 1.91 3 1024

conditions in all cases. Since the numerical scheme used
100 2.91 1.09 3 1024 1.91 3 1024 7.29 3 1024

in both the linear and nonlinear fluxes was the nonlinear 200 2.78 2.12 3 1024 3.38 3 1024 1.20 3 1023

ENO scheme, we used a time step restriction correspond- 600 3.20 3.71 3 1024 4.64 3 1024 1.33 3 1023

1000 4.00 6.41 3 1024 7.34 3 1024 1.67 3 1023aing to the CFL-like condition (4.23):

0.1 10 2.91 9.67 3 1026 3.66 3 1025 2.32 3 1024

100 2.46 1.04 3 1024 1.79 3 1024 6.41 3 1024s 5
R

R 1 4
(6.1)

200 2.72 2.03 3 1024 3.41 3 1024 1.25 3 1023a

600 3.20 4.07 3 1024 4.91 3 1024 1.45 3 1023

1000 4.00 6.51 3 1024 7.51 3 1024 1.80 3 1023Dt 5 s
Dx

umax
. (6.2)

1 10 2.98 1.29 3 1025 3.61 3 1025 2.24 3 1024

100 2.78 1.22 3 1024 2.12 3 1024 7.94 3 1024For the same reasons, we used inequality (5.16) for the
200 2.91 3.33 3 1024 4.92 3 1024 1.64 3 1023

parameter P (defined in Section 5), instead of (5.12).
600 2.78 4.68 3 1024 5.97 3 1024 1.64 3 1023

In all computations we used « 5 1023, as the multiresolu- 1000 3.28 7.81 3 1024 9.07 3 1024 1.96 3 1023a

tion tolerance, and L 5 5 levels. As a measure of the
10 10 3.28 3.23 3 1025 7.57 3 1025 4.26 3 1024‘‘speedup’’ achieved using multiresolution analysis we

100 2.37 1.58 3 1023 3.58 3 1023 1.33 3 1022adopted the efficiency e defined in [7] as
200 2.42 1.49 3 1023 2.86 3 1023 1.39 3 1022

600 2.78 6.91 3 1023 1.14 3 1022 3.61 3 1022a

1000 2.91 9.41 3 1023 1.39 3 1022 3.81 3 1022e 5
N0

N0/2L 1 uDnu
,

a A figure is enclosed for this particular case.

where Dn is the set of those cells, on all multiresolution
levels, at time n, where exact computations are required

a very viscous case, and, thus, a relatively high value of P:by the regularity analysis. The errors e1 , e2 , and ey are the
P P int(3.54) 5 4, where we use ‘‘int(x)’’ to denote thel1 , l2 , and maximum norms, respectively, of the differences
rounded integer representation of a real number x. Afterbetween the multiresolution solution and the classical or
1000 time steps, but at t only 0.00195, we get the profilenon-multiresolution solution.
shown in Fig. 4a. The corresponding multiresolution dia-For each case we plotted the solution (part ‘‘(a)’’ of
gram of Fig. 4b also confirms our expectation of a quickthe figure) and the corresponding multiresolution diagram
smoothing process where two of the finest levels do not(part ‘‘(b)’’). The multiresolution diagram contains a sym-
show any nonzero coefficients. An efficiency of 4.0 isbol wherever large regularity coefficients occur in the
reached at n 5 1000 (Table I), after a transient stage wherex 2 l plane, where l, 0 # 1 # L 5 5 is the level of resolution
e dips well below 3 because of the padding required by(the grid coarsens as l increases). Namely, the circles indi-
the viscous term. The errors, when compared to the non-cate exact flux computation and ENO reconstruction.
multiresolution solution, are small, although they accumu-

6.1. The Linear Case late in time.

(ii) R 5 0.1. This is a moderate mesh Reynolds number,When (2.2a) is used with a 5 1 and the unit step function
where the multiresolution stencil enlargement needed is
slightly smaller than the previous case (P P int(3.22) 5
3). The transient efficiencies are similar to the previousu0(x) 5 H1, if 21 # x # 0,

0, if 0 , x , 1,
(6.3)

cases, although the smoothing is much slower. See Table
I and Figs. 5a,b.

as the initial condition, we get an idea of how the multireso-
(iii) R 5 1. Here the CFL number is already at Af, and

lution scheme performs with a linearly moving and non-
the convective effect now dominates over the diffusive

sharpening discontinuity. Four runs were done, holding all
process (Fig. 6a). Again, the multiresolution diagram of

parameters constant except R:
Fig. 6b holds no surprises: the coefficients from the finest
level have disappeared, and only a few exist on the second(i) R 5 0.001. This is the smallest mesh Reynolds num-

ber we have used in computations, and it corresponds to finest one. This case corresponds to P P int(1.81) 5 2.
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FIG. 4. Solution at n 5 1000, R 5 0.001, convection–diffusion equation, I.C. (6.3).

(iv) R 5 10. This case is approaching the limiting case can be obtained by taking n R 0. This numerical evidence
reinforces some of the analysis indicating that the additionwhere the viscosity is very low, and the smoothing effect is

correspondingly slow. There is no viscous stencil extension of multiresolution to the scheme changes neither the nu-
merical nor the physical properties of the problem.(according to (5.16), P P int(0.39) 5 0), but the efficiency

is still in the transient at n 5 1000 (see Table I and Figs.
7a,b); and it will take a long time before it reaches the
smooth stage of the earlier cases, which will happen more

6.2. The Nonlinear Case
because of the numerical dissipation than the physical one.
This case also serves as an example to show that (in both For the nonlinear problem we want to analyze the behav-

ior of the multiresolution scheme for both discontinuousthe linear and the nonlinear cases) the inviscid solution

FIG. 5. Solution at n 5 200, R 5 0.1, convection–diffusion equation, I.C. (6.3).
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FIG. 6. Solution at n 5 1000, R 5 1, convection–diffusion equation, I.C. (6.3).

and smooth initial data. Both yield (although possibly nonlinearity and viscosity is tilted much toward the latter,
so that the convective part of the flux is negligible.weak) discontinuities after finite time, but they behave

differently in the transient. (ii) R 5 1. On Fig. 9a one can clearly recognize the
shock, although smeared, and the rarefaction, also

A. Discontinuous Initial Data smeared. The diagram on Fig. 9b shows some fine level
cells for the shock, but the (smooth) corners of the rarefac-Using IC (6.3) and flux (2.2b), we show results for three
tion wave are represented only from the second finest levelvalues of R:
on. The efficiency is relatively high, being around 3, even

(i) R 5 0.001. The solution as shown in Figs. 8a,b and in the transient. This mesh Reynolds number can be consid-
Table II, is almost identical to its linear counterpart of Figs. ered ‘‘moderate’’ also in the sense that both of the two

competing forces are felt. As in the previous cases, the4a,b and Table I. The aforementioned balance between

FIG. 7. Solution at n 5 600, R 5 10, convection–diffusion equation, I.C. (6.3).
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FIG. 8. Solution at n 5 1000, R 5 0.001, viscous Burgers’ equation, I.C. (6.3).

errors, when compared to the non-multiresolution solu- B. Smooth Initial Data
tion, stay quite small, ensuring that the behavior and qual-

For this case we take the initial condition to beity of the solution are not altered.

(iii) R 5 10. Here we expect an almost inviscid behav-
u0(x) 5 sin(fx), 21 # x , 1. (6.4)ior. Indeed, when compared to corresponding results of

[1], the efficiencies of Table II, the profile of Fig. 10a,
and the diagram of Fig. 10b are similar to their inviscid Except for the limiting case when R is very large, in this

case a fully discontinuous shock of width 0 never exists.counterparts. After a slight initial drop, e steadily increases
in time, since after 600 time steps it already shows a fully Thus, the shock will never ‘‘widen,’’ rather the opposite.

We know from the physics that the generic estimate (3.15),developed N-wave (Fig. 10a).

FIG. 9. Solution at n 5 200, R 5 1, viscous Burgers’ equation, I.C. (6.3).
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FIG. 10. Solution at n 5 600, R 5 10, viscous Burgers’ equation, I.C. (6.3).

which is based on (3.7) and assumes an initial discontinu- (i) R 5 0.001. The large diffusion keeps the initially
smooth data smooth for all time. The efficiency does notity, is much too pessimistic. Nevertheless, as long as we

account for the worst case scenario represented by (3.15), change, but eventually we expect it to rise as the extrema
further diminish in magnitude. See Table III and Figs.multiresolution is safe, although possibly less than opti-

mal. Therefore, we accept (3.15), for the moment, for 11a,b for results.
all problems. As our numerical results will demonstrate, (ii) R 5 1. At n 5 600 we have an N-wave (Fig. 12a)
we still get efficiencies of at least around 4 for our and a corresponding multiresolution diagram (Fig. 12b)
model problem. that resembles that of an inviscid case. The main difference

We now turn to present results for R 5 0.001, 1, and 10: between this and case A(ii) above is the overall higher

TABLE II TABLE III

Numerical Solution of 1D Viscous Burgers’Numerical Solution of 1D Viscous Burgers’
Equation, I.C. (6.3) Equation, I.C. (6.4)

R n e e1 e2 eyR n e e1 e2 ey

0.001 10 2.91 9.28 3 1026 3.56 3 1025 1.91 3 1024 0.001 10 4.00 9.71 3 1026 1.72 3 1025 6.02 3 1025

100 4.00 4.19 3 1025 5.42 3 1025 1.73 3 1024100 2.64 1.07 3 1024 1.88 3 1024 7.26 3 1024

200 2.81 2.16 3 1024 3.48 3 1024 1.20 3 1023 200 4.00 7.64 3 1025 9.15 3 1025 2.41 3 1024

600 4.00 2.16 3 1024 2.42 3 1024 4.54 3 1024600 3.20 3.79 3 1024 4.72 3 1024 1.34 3 1023

1000 4.00 6.40 3 1024 7.33 3 1024 1.76 3 1023a 1000 4.00 3.39 3 1024 3.78 3 1024 6.54 3 1024a

1 10 3.05 1.05 3 1025 3.52 3 1025 3.23 3 1024 1 10 4.00 1.46 3 1025 2.61 3 1025 1.14 3 1024

100 3.66 8.51 3 1025 1.37 3 1024 4.79 3 1024100 2.72 1.09 3 1024 2.04 3 1024 8.41 3 1024

200 2.88 1.60 3 1024 2.54 3 1024 8.73 3 1024a 200 3.12 1.52 3 1024 2.53 3 1024 1.25 3 1023

600 4.57 1.47 3 1024 1.79 3 1024 6.02 3 1024a600 3.16 2.83 3 1024 3.79 3 1024 1.20 3 1023

1000 3.88 2.98 3 1024 3.82 3 1024 1.09 3 1023 1000 4.65 1.47 3 1024 1.78 3 1024 4.48 3 1024

10 10 3.20 2.58 3 1025 1.18 3 1024 1.23 3 1023 10 10 4.00 1.07 3 1024 2.29 3 1024 8.89 3 1024

100 4.41 1.47 3 1024 1.90 3 1024 7.71 3 1024100 3.12 1.93 3 1024 4.07 3 1024 3.98 3 1023

200 3.71 2.78 3 1024 5.55 3 1025 4.88 3 1023 200 5.33 1.48 3 1024 1.85 3 1024 6.67 3 1024a

600 5.57 1.60 3 1024 1.97 3 1024 6.02 3 1024600 5.44 2.08 3 1024 2.56 3 1024 6.42 3 1024a

1000 5.95 4.89 3 1024 1.62 3 1023 1.42 3 1022 1000 5.57 1.47 3 1024 1.84 3 1024 6.97 3 1024

a A figure is enclosed for this particular case.a A figure is enclosed for this particular case.
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FIG. 11. Solution at n 5 1000, R 5 0.001, viscous Burgers’ equation, I.C. (6.4).

efficiencies, despite the fact that the same estimate (3.15) by adding the multiresolution optimization. Overall the
is used in both cases for shock width change. results are promising, and they seem to support the previ-

ous analysis. The analysis serves to give us a rough estimate(iii) R 5 10. Again, for this R, the multiresolution
in order to modify the multiresolution algorithm previouslyregion does not need to be enlarged, and, because of the
used for purely hyperbolic problems. This estimate maystrong shock sharpening mechanism, we expect high effi-
be further refined, partly by making additional assump-ciencies. Figure 13a shows the shock that has now become
tions, or by relying more on numerical experiments. On thestationary and very sharp. The efficiency is high (e 5 5.33
other hand, our estimates also show that for high enoughat n 5 200 already!) and the multiresolution diagram is
Reynolds numbers the viscous problem does not need anycorrespondingly sparse (Fig. 13b).
special treatment, and the multiresolution scheme devel-With respect to all the numerical runs, we would again
oped for hyperbolic conservation laws can be used in itsemphasize that the errors are quite small in every case,

and thus the quality of the solution is not compromised original form.

FIG. 12. Solution at n 5 600, R 5 1, viscous Burgers’ equation, I.C. (6.4).
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FIG. 13. Solution at n 5 200, R 5 10, viscous Burgers’ equation, I.C. (6.4).

7. SUMMARY d(t 1 Dt) 2 d(t)
Dt

5 d9(t*) (A.1)

We presented a modified 1D multiresolution scheme
originally developed for hyperbolic conservation laws. for some t* [ [t, t 1 Dt]. The quantity Dd(t) can thus be

measured by d9. Our aim is, therefore, to show that d9Theoretical results for the shock width were given, and
subsequently used, together with stability bounds, to pro- itself is largest at t 5 0. The simplest way to prove this is

to show d0 , 0 ;t . 0.vide a reliable estimate for the change in the irregularities’
location. The analysis also showed that for low enough In order to simplify the algebra, we introduce
viscosity coefficients, no modification of the scheme is
needed. Our numerical results in the viscous case are en-

G(t) 5 Ïfnt eu2
0t/4n F1 1 E S u0t

2Ïnt
DG, (A.2)couraging; for most cases, the efficiency was comparable

to the corresponding inviscid problem, indicating the feasi-
bility of multiresolution schemes for the viscous problem so that two consecutive differentiations of (3.7) will now
also. yield

The present work can perhaps be considered a first step
towards developing multiresolution schemes for full Na-

d9 5 8n2 G9

(u0G 1 2n)2 (A.3)vier–Stokes equations, where the idea of using shock width
estimates should also work. Stability bounds too have been
derived for Navier–Stokes equations, and, in conjunction and
with the shock width, can be used to predict the viscous
multiresolution stencil. For systems, as well as for higher

d0 5 8n2 G0(u0G 1 2n) 2 2u0(G0)2

(u0G 1 2n)3 . (A.4)order ENO, we expect the payoff from multiresolution
speedup to be substantial in terms of actual computational
time also. After differentiating (A.2) twice we note:

APPENDIX A G9 5
1
2 FG S1

t
1

u2
0

2nD1 u0G, (A.5)

In this appendix we show that, given a fixed time step
Dt and all the assumptions of Section 3.2, the largest change G0 5

1
2 FG9 S1

t
1

u2
0

2nD2
1
t2 GG. (A.6)

in shock width, Dd(t) 5 d(t 1 Dt) 2 d(t), occurs at t 5 0.
First, by the mean value theorem, we have that (since

d is differentiable for all t . 0): We now substitute (A.5) and (A.6) into (A.4) and obtain
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3A 1 B # 0. (B.4)
d0 5

8n2

(u0G 1 2n)3 F2
1
2

GSu2
0

2t
1

n
t2 1

u4
0

2nD2
u0

2t SG2

t
2 nD

We want to show that (B.4) implies (B.3).
First note that from (B.2a) and (B.1), A satisfies

2
1
2

u3
0 2

1
4

u0G2S1
t

1
1
2

u2
0D2G. (A.7)

0 $ A $ 21. (B.6)

We can therefore writeBy observation, all terms within the square bracket are
negative, except the expression in the second parenthesis,

2A $ A2 ⇔ 2Ï2A 2 A $ 23A.but for which we have from (A.2),

The latter of these inequalities, combined with (B.4), now
gives (B.3).G2

t
2 n . n(f 2 1) . 0 (A.8)
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